Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method
نویسندگان
چکیده
Three-scale homogenization procedure is proposed in this paper to provide estimates of the effective thermal conductivities of porous carbon-carbon textile composites. On each scale the level of fiber tow (micro-scale), the level of yarns (meso-scale) and the level of laminate (macro-scale) a two step homogenization procedure based on the Mori-Tanaka averaging scheme is adopted. This involves evaluation of the effective properties first in the absence of pores. In the next step, an ellipsoidal pore is introduced into a new, generally orthotropic, matrix to make provision for the presence of crimp voids and transverse and delamination cracks resulting from the thermal transformation of a polymeric precursor into the carbon matrix. Other sources of imperfections also attributed to the manufacturing processes, including non-uniform texture of the reinforcements, are taken into consideration through the histograms of inclination angles measured along the fiber tow path together with a particular shape of the equivalent ellipsoidal inclusion proposed already in (Skoček et al., 2008). The analysis shows that a reasonable agreement of the numerical predictions with experimental measurements can be achieved.
منابع مشابه
Free Vibration and Buckling Analyses of Functionally Graded Nanocomposite Plates Reinforced by Carbon Nanotube
This paper describes the application of refined plate theory to investigate free vibration and buckling analyses of functionally graded nanocomposite plates reinforced by aggregated carbon nanotube (CNT). The refined shear deformation plate theory (RSDT) uses four independent unknowns and accounts for a quadratic variation of the transverse shear strains across the thickness, satisfying the zer...
متن کاملFree Vibration Analyses of Functionally Graded CNT Reinforced Nanocomposite Sandwich Plates Resting on Elastic Foundation
In this paper, a refined plate theory is applied to investigate the free vibration analysis of functionally graded nanocomposite sandwich plates reinforced by randomly oriented straight carbon nanotube (CNT). The refined shear deformation plate theory (RSDT) uses only four independent unknowns and accounts for a quadratic variation of the transverse shear strains across the thickness, and satis...
متن کاملStudies of Electrical and Thermal Conductivities of Sheared Multi-Walled Carbon Nanotube with Isotactic Polypropylene Polymer Composites
Polymer nanocomposite materials of higher thermal and electrical transport properties are important to nanotech‐ nology applications such as thermal management, packag‐ ing, labelling and the textile industry. In this work, thermal and electrical conductivities in nanocomposites of multiwalled carbon nanotubes (MWCNT) and isotactic polypro‐ pylene (iPP) are investigated in terms of MWCNT loadin...
متن کاملHybrid nanofluid based on CuO nanoparticles and single-walled Carbon nanotubes: Optimization, thermal, and electrical properties
The purpose of this study is to use the thermal and electrical conductivities of copper oxide nanoparticles and carbon nanotubes for the preparation of high-performance nanofluids for achieving better heat transfer properties. These nanofluids consist of a water/Ethylene Glycol solution containing single-wall carbon nanotubes (SWCNTs) and copper oxide nanoparticles (CuONPs). The effects of such...
متن کاملThermal Stress Analysis of a Composite Cylinder Reinforced with FG SWCNTs
Thermal stress analysis of a thick-walled cylinder reinforced with functionally graded (FG) single-walled carbon nanotubes (SWCNTs) is considered in radial direction. Thick-walled cylinder is subjected to a thermal field. Two layouts of variations in the volume fraction of SWCNTs were considered in the composite cylinder along the radius from inner to outer surface, where their names are increm...
متن کامل